
GID
3, 193–219, 2013

Optimal network
design

G. S. Mauger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Geosci. Instrum. Method. Data Syst. Discuss., 3, 193–219, 2013
www.geosci-instrum-method-data-syst-discuss.net/3/193/2013/
doi:10.5194/gid-3-193-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess

Nonlinear Processes 
in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess
Ocean Science

Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

This discussion paper is/has been under review for the journal Geoscientific Instrumentation,
Methods and Data Systems (GI). Please refer to the corresponding final paper in GI if available.

Optimal design of a climatological
network: beyond practical considerations
G. S. Mauger1, K. A. Bumbaco2, G. J. Hakim3, and P. W. Mote4

1Climate Impacts Group, University of Washington, Box 355674, Seattle,
WA 98195-5672, USA
2Office of the Washington State Climatologist, University of Washington, Box 355672, Seattle,
WA 98195-5672, USA
3Department of Atmospheric Sciences, Box 351640, University of Washington, Seattle,
WA 98195-1640, USA
4College of Earth, Ocean, and Atmospheric Sciences, 104 CEOAS Admin Building,
Oregon State University, Corvallis, OR 97331, USA

Received: 2 January 2013 – Accepted: 16 April 2013 – Published: 3 May 2013

Correspondence to: G. S. Mauger (gmauger@uw.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

193

http://www.geosci-instrum-method-data-syst-discuss.net
http://www.geosci-instrum-method-data-syst-discuss.net/3/193/2013/gid-3-193-2013-print.pdf
http://www.geosci-instrum-method-data-syst-discuss.net/3/193/2013/gid-3-193-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GID
3, 193–219, 2013

Optimal network
design

G. S. Mauger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

Station locations in existing environmental networks are typically chosen based on
practical constraints such as cost and accessibility, while unintentionally overlooking
the geographical and statistical properties of the information to be measured. Ideally,
such considerations should not take precedence over the intended monitoring goal of5

the network: the focus of network design should be to adequately sample the quantity
to be observed.

Here we describe an optimal network design technique, based on ensemble sensi-
tivity, that objectively locates the most valuable stations for a given field. The method
is computationally inexpensive and can take practical constraints into account. We de-10

scribe the method, along with the details of our implementation, and present example
results for the US Pacific Northwest, based on the goal of monitoring regional annual-
mean climate. The findings indicate that optimal placement of observing stations can
often be highly unintuitive, thus emphasizing the importance of objective approaches.
Although at coarse scales the results are generally consistent, sensitivity tests show15

important differences in the regions highlighted for new measurements, especially at
smaller spatial scales. These uncertainties could be reduced with improvements in
datasets and improved estimates of measurement error. We conclude that the method
is best suited for identifying general areas within which observations should be focused,
and suggest that the approach could serve as a valuable complement to land surveys20

and expert input in designing new environmental observing networks.

1 Introduction

Environmental observing networks are established for a wide variety of purposes, rang-
ing from short-term weather forecasting to monitoring ecosystem change. A compro-
mise between scientific and practical considerations (e.g., site accessibility, cost, land25

ownership) usually governs the placement of stations, though practical considerations
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often have a greater influence on the final station locations. Historically, station site se-
lection has typically been made subjectively, which suggests that the goals for the net-
work are not met optimally or cost effectively. Theories for optimal observing networks
have matured to the point where an objective cost-benefit analysis can be considered
when creating, augmenting, or revising an observing network. Objectivity is important5

because results show that optimally selected station locations often do not follow from
intuition. Here we describe a flexible ensemble-based network-design algorithm that
incorporates measurement error and can account for practical considerations such as
accessibility of the site and land ownership.

An example of an observing network is the cooperative observer (COOP) weather10

network, which was established in the 19th century and remains the primary legacy
network for climate monitoring in the United States. Since the COOP network relies
heavily on volunteer observers, nearly all stations are situated in inhabited areas, and
stations consequently tend to cluster in lower elevations. Installation and annual upkeep
is more costly for remote stations, and these locations are often overlooked. For areas15

with complex terrain such as the western United States, low-lying networks near popu-
lation centers do not accurately represent the climate in adjacent mountainous areas,
especially for precipitation (Dabberdt and Schlatter, 1996). Variations in wind and sun
exposure, cold air pooling in mountain valleys, and coastal fog are just a few examples
of common weather occurrences that can result in sharp climate distinctions across20

fairly short distances (e.g., Lundquist and Cayan, 2007; Abatzoglou et al., 2009). As a
result, it is possible for closely spaced stations to sample vastly different climates, or
conversely, for two distant stations to be highly correlated and hence largely redundant.
Prior studies have confirmed this (e.g., Fujioka, 1986; Hargrove et al., 2003), showing
that uniformly spaced stations do not provide an advantage over those that are opti-25

mally placed. Fujioka (1986), for example, found that the optimal station locations were
non-intuitive, and had 15 times less normalized error than the gridded locations in rep-
resenting fire weather variables in southern CA.
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Clearly, methods are needed that can help objectively identify compromises between
scientific and practical considerations when designing and augmenting an observing
network. By optimally determining the most valuable observation sites, the utility of a
network can be maximized and the cost minimized as redundancy and guesswork in
station placement is reduced. The optimal network design technique presented here,5

rooted in ensemble sensitivity, has the advantage that it can be used to strike a bal-
ance between scientific and practical considerations using a simple, computationally
inexpensive algorithm. We use the US Pacific Northwest as an illustrative example of
the technique, and choose regional climate as our monitoring goal.

2 Background: network design10

Most of the research into the design of environmental networks has been done in the
air quality monitoring and hydrology fields (e.g., Alfonso et al., 2010; Creelman and
Risk, 2011; Dixon and Chiswell, 1996; Fuentes et al., 2007; Kurdzo and Palmer, 2012;
Nychka and Saltzman, 1998; Volkmann et al., 2010; Wu and Bocquet, 2011). In hy-
drology, Mishra and Coulibaly (2009) provide a very thorough review of progress in15

optimal hydrometric (i.e., precipitation and streamflow) network design. They summa-
rize the approaches that have been taken to design a network for surface hydrology
and classify them as being based on either statistics, information theory, user surveys,
physiographic components, sampling, or a hybrid method. Objective approaches such
as the first two are particularly important in meteorological observations, where the20

optimal measurement locations can be quite unintuitive. Such approaches are often
referred to as “entropy-based”, since the emphasis is on maximizing the information
content of the network. The objective approach described here falls into this category,
using ensemble samples drawn from climatological data.

The ensemble sensitivity approach to network design is based on the idea of adap-25

tive (or targeted) observations (e.g., Bergot et al., 1999; Morss et al., 2001; Bishop
and Toth, 1999). Although the criteria are quite different, the same principles can be
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applied to the development of a fixed network for long-term monitoring. The problem
centers on improving estimates of a scalar measure of interest, or “metric”, J . Applied
to network design, the method (e.g., Khare and Anderson, 2006; Ancell and Hakim,
2007; Huntley and Hakim, 2010) works by iteratively finding sites that explain the most
variance of a given climate field while accounting for the variance explained by previous5

“stations” selected (hereafter, the term “station” is used to refer to the optimal observ-
ing locations identified in the ensemble sensitivity approach). Finding the first station is
relatively straightforward: it consists of identifying the point with the highest correlation
with the metric while also maximizing the ratio of that correlation to the measurement
error. Locating the second station is more difficult because the choice must account for10

the variance already explained by the first station. As discussed below, this is accom-
plished by using the Kalman update equation to adjust the sampled values at each grid
point. The process then repeats: a new station is chosen, and the ensemble sample is
adjusted to account for the new information that this station provides. With each chosen
station, the variance in the data decreases according to the variance explained by the15

previous stations. At some point, very little additional variance is gained by identifying
new stations, or alternatively, the remaining variance becomes indistinguishable from
the noise. This point is reached when no new information is gained by adding stations
beyond the number already identified (in Sect. 3 we describe our bootstrap approach
to approximating this threshold). Note that the method is general: no specific time-step,20

variables, or spatial configuration is required. This is a key strength of the approach. A
brief description of the algorithm follows.

In ensemble sensitivity analysis, different samples of the state of the system (x) are
used to develop statistics that relate changes in the state of the system to changes in a
particular metric of interest (J). Using a gridded “truth” field as a proxy for observations,25

an optimally located observation is thus defined as the grid point that contributes most
to the variance in J , our metric of interest. We accomplish this by calculating the change
in the variance of J (∆σ2

J ) for each grid point, and identifying the grid point for which this
change is maximized. By using anomalies in the state of the system (x) and a first-order
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Taylor expansion of J , Ancell and Hakim (2007) show that ∆σ2
J can be rewritten as

follows:

∆σ2
J = σ2

J ,i−1 −σ2
J ,i (1)

=
[
∂J
∂x

]T

KiHiBi−1

[
∂J
∂x

]
(2)

Ki = Bi−1HT
i E−1

i (3)5

Ei = HiBi−1HT
i +R2 (4)

where i refers to the i th iteration of the algorithm, Bi−1 is the prior error covariance
of x, Ei is the “innovation error covariance”, and R2 is the measurement error, which
includes both instrument and “representativeness” error (i.e., error associated with sub-
grid variability). Hi is a linearized observation operator, which maps the state of the10

system (x) to an observation of interest. In Eq. (2), the change in the error covariance
upon selection of the i th station is estimated using the Kalman gain (Eq. 3; Hamill,
2006; Kalman, 1960) associated with the new observation.

As discussed above, the selection of the i th station is conditioned on the vari-
ance explained by the previous (i −1) stations. In matrix form, this conditional adjust-15

ment is applied using the classic Kalman update equation for the covariance matrix
(Bi = (I −KiHi )Bi−1). The matrix implementation, however, has two principle disadvan-
tages: (1) it can be numerically unstable, and (2) it is computationally expensive. As a
result, we instead use the square root implementation of the Kalman update equation,
as follows:20

∆σ2
J =

cov(J ,xm,i )
2

σ2
xm,i

+R2
m

(5)
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xm,i = xm,i−1 −β

cov(xm,i−1,xstn,i−1)

σ2
xstn,i−1

+R2
m

xstn,i−1 (6)

β =
1

1+
√

R2
m

σ2
xstn,i−1

+R2
m

(7)

where xm refers to the time series for an arbitrary grid point, xstn refers to the time
series for the i th selected station, and β is a term that results from the conversion from5

matrix to square root form (Potter, 1964). These simplified equations arise from the fact
that, in serial processing (i.e., the square root implementation), Hi is simply a vector
that extracts the mth grid point of x (i.e., Hi = [0,0, . . .,1, . . .,0]; see Huntley and Hakim,
2010).

Although perhaps less elegant than in their matrix form, these equations help illus-10

trate the logic behind the approach. First, note that Eq. (5) very closely resembles the
square of the correlation between J and the time series at each grid point, the only
differences being a missing constant (σ2

J ) and an added error term (R2) in the denom-
inator. At each step in the calculation, the optimal station is selected by identifying
the grid point for which ∆σ2

J is maximized. The error term serves to promote areas15

where the correlation with J is large compared to the measurement uncertainty. Sec-
ond, note that Eq. (6) essentially uses an ordinary least squares regression, scaled by
β, to adjust the sample values at each grid point (xm). The conditional adjustment is
thus achieved by removing that portion of the variance in xm that can be reproduced
using the time series of the selected station (xstn). Finally, note that the parameter β is20

always between 0.5 and 1, and thus serves to reduce the adjustment to xm, based on
the proportion of grid cell variance to measurement uncertainty (R2).

The approach we have described rests on several key assumptions. Specifically, the
Kalman update equation is only optimal if the following conditions are met:
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1. Linear : the approach involves a linearization about the time-averaged state.

2. Gaussian: the model state variables (and associated noise) are Gaussian in dis-
tribution.

These assumptions are discussed below in the context of our example application of
the approach.5

3 Methods

Here we examine the problem of monitoring regional and time-averaged precipitation
and temperature over the US Pacific Northwest (hereafter “PNW”), which we define to
span the three states of Oregon, Washington, and Idaho (see Fig. 1). This is based
loosely on the recent interest in improving climate monitoring across the US, as exem-10

plified by the deployment of the Climate Reference Network (CRN) in the early 2000s.
As we note above, although there are numerous observing stations throughout this
region, the sampling is biased towards lower elevations and population centers, in all
likelihood leaving important features of the regional climate unobserved. The purpose
of the present exercise is thus to identify the locations where surface measurements15

would be most valuable, with regard to the goal of monitoring annual climate in the
PNW. For simplicity we assume that we are designing the network from scratch and
neglect practical considerations such as land ownership and access. The results thus
identify the most valuable observing locations, irrespective of existing measurements
or constraints on land use, access, etc. As discussed in the conclusions, the method20

can be easily adapted to incorporate such considerations.
In order to explore the sensitivity to the dataset used to define the stationary climate,

we apply the method using the following three meteorological datasets:

1. Parameter-elevation Regressions on Independent Slopes Model (PRISM).

2. North American Regional Reanalysis (NARR).25
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3. Global Historical Climatology Network (GHCN v3.0) surface observations.

PRISM (Daly et al., 2002) is created by gridding point observations and using an in-
terpolation scheme that accounts for influences of terrain on climate including rain
shadows, coastal effects, and temperature inversions. Annual temperature and pre-
cipitation data were obtained at 2.5 arc-minute (∼4 km) resolution from the PRISM5

Climate Group website (www.prism.oregonstate.edu) for the years 1948–2011. Note
that although PRISM data are available for 1895 to present, we chose to use only data
from 1948 onward due to the greater station density in the latter part of the record.
NARR (Mesinger et al., 2006) is an assimilated dataset covering North America from
1979 to present at a spatial resolution of 32 km. Data were obtained from the National10

Climatic Data Center (NCDC; http://nomads.ncdc.noaa.gov/). GHCN is an integrated
and quality-assured database of land surface stations. Stations included in the present
analysis stem from three sources: the Cooperative observer network (COOP), Snopack
Telemetry (SNOTEL) sites, and Weather Bureau Army Navy (WBAN) observations.
Daily data were quality controlled by eliminating any temperature excursions that ex-15

ceeded 5 standard devations of all daily measurements for a specific calendar month,
and any daily precipitation measurements that exceeded 254 mm (10 inches). Annual
averages of GHCN observations were compiled from daily data by requiring a minimum
of 10 days to compute a monthly average and 9 months to compute an annual average
– different choices for these thresholds did not substantially impact the results. The 18120

stations with complete records for 1979–2011 were included in the analysis.
We begin by assessing the extent to which the data satisfy the two assumptions listed

in the previous section, which are necessary conditions for applying the ensemble sen-
sitivity approach. The first assumption, linearity, is not an issue for our application: since
we intend to model precipitation and temperature using distributed observations of pre-25

cipitation and temperature, our model simply consists of an average and is therefore
linear.

The assumption of Gaussian statistics is worth investigating in some depth, in par-
ticular with regard to precipitation, which – even at annual time scales – exhibits a
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distribution that is skewed toward larger values. Table 1 lists the statistics of temper-
ature, raw precipitation, and tranformed precipitation data, showing the range of each
statistic over all grid points. The transformed precipitation was created by remapping
the observed cumulative distribution of precipitation to that of a normal distribution (i.e.,
by matching quantiles). To preserve the spatial variability in precipitation, the width of5

the normal distribution was scaled to match the variance of the observations. The trans-
formation was performed separately for each grid cell since, although lumping all of the
data together would improve sampling, it would not guarantee Gaussian statistics at
each point. As can be seen in Table 1, the main impact of the precipitation transform is
to eliminate any skewness in the data, though it is notable that the raw precipitation data10

is very nearly Gaussian as well. For this reason, our default in the calculaions below is
to use raw precipitation, though we note the impact of using transformed precipitation
in the sensitivity tests discussed below.

The method takes into account measurement error (denoted R2 in Eq. 3) result-
ing primarily from instrumental error and representativeness error, the latter being the15

error due to the fact that variability exists at the subgrid scale. Although in principle
these quantities can be estimated, in practice such estimates are quite uncertain. In
the present study, we use the empirically-based estimates of the error variance in daily
observations of surface temperature used by the European Centre for Medium-Range
Weather Forecasting (ECMWF), of 3.6 K2. Assuming an autocorrelation time scale of 520

days, we obtain an annual error variance of ∼0.05 K2 for annual average temperature.
A constant value for R2 is applied to all grid cells. Since measurements of precipita-
tion are not generally assimilated in weather forecasting, there does not exist a similar
estimate for the appropriate error variance in precipitation. As a result, we estimate
the error variance for precipitation by simply rescaling the value used for tempera-25

ture using the ratio of the variance in precipitation to the variance in temperature, and
accounting for a precipitation autocorrelation time scale of 2 days instead of 5. This
corresponds to an error variance of ∼3.6 % of the variance in precipitation at each
grid cell, and a mean error variance of 500 mm2 (for total annual precipitation). Note
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that this is an approximation, since precipitation measurements are subject to different
and often greater errors than for temperature. However, such differences are likely far
less than the span of the sensitivity tests for R2, described below. Finally, note that in
contrast with temperature, R2 is scaled with the grid cell variance in precipitation, since
using a constant error variance would bias the results in favor of wetter regions.5

Since both estimates of R2 are approximations, we perform a simple verification
by comparing our estimates with the mean-squared difference between two nearby
observing stations – Sea-Tac airport (47.45◦ N, −122.3◦ W) and Kent COOP (47.4◦ N,
−122.2◦ W) – for the overlapping time series spanning 1951–2011. Note that we are us-
ing mean-squared difference as a proxy for representativeness error, which is generally10

the dominant factor governing the magnitude of R2. The result is a value of 0.28 K2 for
temperature and 7800 mm2 for precipitation. Our central estimate for R2 at that location
is ∼950 mm2 for precipitation (and, as with all grid cells, 0.05 K2 for temperature), indi-
cating that our estimates are conservative but within the range of our sensitivity tests,
discussed below. Furthermore, the distance between these two observing stations is15

7.5 km, which is about twice the grid resolution of the PRISM dataset, making it likely
that these numbers represent an overestimate of representativeness error.

As the above discussion of measurement error highlights, several of the parameters
used in applying the method are uncertain. Specifically, in addition to measurement
error, the method may be sensitive to the choice of climate dataset, precipitation trans-20

form, the number of years included in the gridded data, the sample size (in years) for
each calculation, and assumptions about the number of stations that the algorithm can
meaningfully identify (i.e., as limited by sampling error). To address the sampling is-
sues, we implemented a Monte Carlo routine in which the algorithm was run 50 000
times, using a different random sample of years for each iteration. The Monte Carlo25

approach also addresses the question of noise limitations, since statistics can be ob-
tained on the consistency of results between iterations (see discussion below). To test
robustness to other parameters, we performed the following sensitivity tests: measure-
ment error variance (R2) was scaled by a factor ranging from 0.1 to 10, runs were
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repeated for different climate datasets, precipitation transforms, sample sizes (ranging
from 20 to 40 yr), and years from which to draw samples (1948–1979 vs. 1980–2011).

4 Results and discussion

Figure 2 shows the best estimate of the optimal observing locations, obtained using
the following choices of data and parameters:5

– Metric (J): regionally averaged annual Temperature and Precipitation

– Dataset: PRISM

– Years: 1948–2011

– Sample size: 30 yr

– R2 = 0.05 K2 for temperature10

– R2 = 3.6 % of the grid cell variance in precipitation

– Precipitation: raw data (not transformed)

In this section we discuss these results along with the results of our sensitivity tests,
which evaluate the impact of varying the above parameters and assumptions.

We summarize the results by producing maps that show the frequency, among all15

Monte Carlo iterations, with which a grid point is selected in the top “N” stations, where
“N” is chosen to correspond to some average total variance explained in regional tem-
perature or precipitation. This accounts for sample variability while highlighting areas
that are most likely to contribute optimally to monitoring regional climate. The result is
a frequency value for each grid point, which can then be mapped as shown in Fig. 2.20

Since these frequency values are most meaningful in a relative sense – which grid cells
have greater weightings than others – we display the percentile values of the grid cell
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weightings, which we consider more helpful for interpretation. For example, a point is
assigned a 95 % percentile value if its frequency value – the fraction of Monte Carlo
iterations in which it was selected in the top “N” points – is greater than or equal to that
of 95 % of all other points. Finally, in this and subsequent maps stemming from gridded
PRISM data, the results have been averaged from 2.5 arc-min (∼4 km) resolution to5

0.5 degree resolution. This smoothing is applied to aid in interpretation.
In order to choose “N” we look at the change in the variance explained as the calcu-

lation progresses – in other words, the percent of the variance in the metric (regional
temperature or precipitation) that can be reproduced using a linear combination of the
already-chosen stations. Table 2 lists the mean variance explained for both temperature10

and precipitation, for each additional station selection, for the results mapped in Fig. 2.
As described in Sect. 2, the calculation proceeds by selecting stations that maximize
the residual variance explained – in other words, that maximize the additional value
lent by their selection. Table 2 illustrates that, due to high spatial autocorrelation across
the region (in particular at annual time scales), the first station explains a majority of15

the variance, while subsequent stations account for progressively less of the residual
variance. By summing the variance explained at each step we find that, on average,
the top 3 stations in temperature and the top 2 in precipitation are sufficient to explain
95 % of the variance in the annual climate signal for the PNW. Similarly, to explain 99 %
of the variance would require selection of the top 11 and 4 stations for temperature20

and precipitation, respectively. For simplicity, we only show results for the former (i.e.,
95 % variance explained) in Fig. 2 and all subsequent figures. The results for different
choices are qualitatively similar (not shown).

The results shown in Fig. 2 highlight several regions that are important for capturing
the regional signal of climate variability. The results for temperature, for instance, high-25

light the central Snake River plain in Idaho, the mountains of northeast Oregon, and
north-central Washington, among other regions (see Fig. 1 for a key to the geography
of the region). For precipitation, the results are quite different, primarily highlighting
the central Cascades, the Columbia gorge near Portland, the southeastern slopes of
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the Olympic mountains in Washington, and certain parts of the coast of Oregon. No-
tably, the optimal locations for monitoring temperature are almost entirely east of the
Cascade mountains, while the opposite is true for the optimal observing locations iden-
tified for precipitation. In addition, some of the results are quite unintuitive. For instance,
while it makes sense that precipitation monitoring will maximize signal to noise on the5

substantially wetter western slopes of the Cascade mountains, it is not intuitively obvi-
ous that the central Cascade mountains are more appropriate than any other portion of
this mountain range, nor is it clear why the even wetter western slopes of the Olympic
mountains are hardly highlighted at all.

Figure 3 shows a comparison of results obtained from the three datasets: GHCN,10

NARR, and PRISM. In order to perform a direct comparison, NARR and PRISM data
were only used for the grid points that correspond most closely to the location of each
GHCN station, and all datasets applied to the years 1979–2011 only, with a sample
size of 20 yr for each calculation. The R2 values applied to each case were identical.
Note that this is not a perfect comparison, since point measurements (i.e., GHCN) are15

different from grid-cell averages (NARR, 32 km resolution; PRISM, ∼4 km resolution).
The rank correlations between the GHCN results and each gridded dataset are

shown in the upper right-hand corner of each map. Since disagreement among ad-
jacent stations could confound the results, we calculated correlations by first averaging
the point results for each dataset onto a 0.5 degree grid. Point correlations (not shown)20

were significant but substantially lower than their gridded counterparts. We use rank
correlations because the results are highly skewed, causing standard correlations to
be disproportionately affected by a small number of points. Since our emphasis in this
work is on the relative rankings among grid points, we deem the rank correlations a
better measure of similarities among the results. Standard correlations also revealed25

significant positive correlations, but nonetheless lower values.
A number of observations can be made from these results. First, at coarse scales

(i.e., the broad regions highlighted) there is good agreement among the three datasets.
Second, PRISM and GHCN bear the greatest similarities, a fact which is perhaps not

206

http://www.geosci-instrum-method-data-syst-discuss.net
http://www.geosci-instrum-method-data-syst-discuss.net/3/193/2013/gid-3-193-2013-print.pdf
http://www.geosci-instrum-method-data-syst-discuss.net/3/193/2013/gid-3-193-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GID
3, 193–219, 2013

Optimal network
design

G. S. Mauger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

surprising given that PRISM is essentially a regridding of surface observations. Third,
although the general picture remains consistent between datasets, the specific rank-
ings can differ substantially (as reflected in the correlations). Since the three agree
well at coarser spatial scales, this suggests that the discrepancies are primarily in the
treatment of climate variations across smaller scales. We thus conclude that, until well-5

validated improvements in datasets become available, the results are best viewed as
defining broad regions within which to focus efforts. Based on this comparison, Fig. 2
and all subsequent results are shown using the PRISM dataset, averaged to 0.5 degree
resolution (i.e., calculations are performed at the native PRISM resolution of ∼4 km,
then averaged to 0.5 degree resolution for presentation).10

A primary advantage of our approach is that it is objective, and that it is therefore
capable of highlighting non-intuitive but nonetheless optimal observing locations. How-
ever, implementation of the method does entrain a number of important subjective de-
cisions, as highlighted at the beginning of this section. Figures 4 and 5 show how the
results are affected by varying the parameters chosen for the calculation. Specifically,15

we test for the influence of variations in the sample size (20 vs. 40 yr), the years from
which to draw a sample (1948–1979 vs. 1980–2011), and the value for the total error
variance (R2; 10 times smaller vs 10 times larger than our central estimate) in temper-
ature (Fig. 4) and precipitation (Fig. 5). Note that changing the values of R2 changes
the number of stations (“N”) needed to achieve 95 % variance explained – these were20

adjusted accordingly in the maps showing sensitivity to R2. Note, also, that we do not
consider variations in the metric (J) – this would by definition alter the results, but would
not inform our question regarding the robustness of the method.

Overall, as with Fig. 3, these results show broad consistencies across different
parameter values, highlighting similar areas for monitoring despite large variations25

in parameters. Precipitation results appear to be much more robust than those for
temperature. For both variables, the results are largely insensitive to the choice of
sample size, but indicate a fair sensitivity to the choice of years sampled and, in par-
ticular, to R2. The magnitude of R2 impacts the extent to which explanatory power is

207

http://www.geosci-instrum-method-data-syst-discuss.net
http://www.geosci-instrum-method-data-syst-discuss.net/3/193/2013/gid-3-193-2013-print.pdf
http://www.geosci-instrum-method-data-syst-discuss.net/3/193/2013/gid-3-193-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


GID
3, 193–219, 2013

Optimal network
design

G. S. Mauger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

balanced by the ratio of signal-to-noise: small values for R2 favor areas that correlate
best with the regional signal, while large values of R2 favor areas with higher variance.
Even in the case of R2, it is notable that the dominant regions highlighted nearly always
correspond to regions that are also highlighted in Fig. 2.

For precipitation, we also considered the influence of holding R2 constant across5

the domain and of applying a Gaussian transform to the precipitation results. Although
not shown, the results using transformed precipitation correlated highly (r = 0.85; as
above, we computed rank correlations after regridding to 0.5 degree) with the original
results, indicating that at annual time scales the raw data are sufficiently Gaussian.
Results obtained by using constant measurement error were less similar (r = 0.57),10

with differences largely resulting from the greater influence of regions west of the Cas-
cade mountains. These differences are anticipated, since there are sharp changes in
precipitation across the region, and a constant R2 will favor regions with greater accu-
mulation.

5 Conclusions15

The ensemble sensitivity approach provides an objective method for allocating re-
sources to develop an observational network. It allows for rapid evaluation of different
metrics, and requires only a climatological sample. Since the utility of each observa-
tion is maximized, optimal placement ensures an efficient use of resources. There are
two salient features to the approach: (1) stations are selected based on a compromise20

between their correlation with the metric and the ratio of signal-to-noise, and (2) new
selections are constrained to minimize redundancy by maximizing the additional vari-
ance explained.

We present an example in which the goal is to optimally monitor regional climate in
the US Pacific Northwest. Our analysis suggests that this goal can be achieved with 5 to25

10 optimally placed stations. We find that station placement is not intuitive, highlighting
the importance of employing objective methods for network design.
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Sensitivity tests indicate that the results are robust to the choice of sample size and
time period analyzed, but that there are important differences resulting from the choice
of dataset and assumed measurement error (R2). Sensitivity to R2 is fairly strong, but
in general does not result in the identification of new regions for monitoring. Differ-
ences among datasets are likely partially attributable to differences in spatial resolution5

and the distinction between point measurements and grid cell averages. However, it
is also likely that these differences represent real differences in the modeled covari-
ability of temperature and precipitation across the region. Fortunately, the differences
among datasets largely result from small spatial scale distinctions between each: the
broad-scale patterns are consistent. Since important differences do exist, we conclude10

that until an improved dataset becomes available, the method is best used to identify
general areas in which to locate stations. In practice, this is unlikely to be a limitation,
since siting decisions at local scales are dominated by practical constraints such as
land ownership, access, etc.

The example we present pertains to climate monitoring, and the approach assumes15

stationarity in the relationship between temperature and precipitation variations across
the region. It is therefore worth considering whether the non-stationarity of the cli-
mate would impact the value of the network under climate change. The approach uses
the covariance structure to identify optimal observing locations, which is primarily af-
fected by terrain features: elevation, aspect, proximity to the coast, etc. Since these20

will not change with a changing climate – future storms will still come from the west,
temperatures in the interior will still be more variable than at the coasts, etc. – we
do not believe that this is a major concern. Furthermore, the assumption that the
statistical relationships will remain the same with a changing climate is common in cli-
mate research (e.g., statistical downscaling, paleoclimate reconstructions). Moreover,25

an alternative approach, such as using GCM simulations, would have its own set of
caveats in this regard (e.g., bias, coarse resolution, etc.).

A primary advantage of the ensemble sensitivity method is that it can be modified
in a way that takes into account practical and scientific considerations while ensuring
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that the network maximizes return on investment. For instance, there are important
practical constraints on station siting, such as land ownership, proximity to roads, and
the presence of existing stations. These are easily incorporated into the calculations by
(a) constraining the first “n” station selections to correspond to existing observations,
and (b) simply masking out grid cells that do not conform to certain criteria. Further-5

more, climatological networks are not designed to monitor just one quantity, and it is
not necessarily the case that sites that capture a large fraction of the variance in precip-
itation should also be useful for monitoring other variables. The method could be made
to iteratively select temperature and precipitation stations, making each conditional on
the other. Flexibility is a key advantage of this approach: it can be easily adapted to the10

practical constraints of station siting while still ensuring that the monitoring goals are
pursued optimally.

There are numerous potential applications for the ensemble sensitivity method span-
ning multiple fields, monitoring goals, and regions of interest. The advantage of optimal
design is that it ensures an efficient use of resources. We believe that this approach15

can be a useful tool for informing decisions in network design.
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Table 1. Statistics of annual climate data for both temperature and precipitation. Results for
precipitation are shown for both the raw data and after the tranformation to Gaussian, as de-
scribed in the text. For each statistic, the median for all grid cells is listed followed by the 5th
and 95th percentile values in parentheses. Note that a Gaussian distribution has a skewness of
0 and a kurtosis of 3, but that with smaller sample sizes a discrete approximation to a Gaussian
results in slightly lower values for the kurtosis.

Variable Source Mean Variance Skewness Kurtosis

GHCN 10.1 (5.2, 12.3) 0.5 (0.3, 1.2) −0.4 (−1.5, 0.3) 3.2 (2.2, 6.2)
Temperature (◦C) PRISM 6.9 (2.0, 11.2) 0.6 (0.3, 1.2) −0.1 (−0.7, 0.5) 2.8 (2.3, 4.1)

NARR 7.8 (2.2, 11.9) 0.6 (0.2, 1.1) −0.1 (−0.7, 0.3) 2.7 (2.0, 4.0)

GHCN 0.59 (0.23, 2.1) 0.016 (0.0039, 0.21) 0.6 (−0.1, 2.0) 3.0 (2.0, 8.4)
Raw Precip (m yr−1) PRISM 0.53 (0.24, 2.3) 0.010 (0.0034, 0.16) 0.4 (−0.1, 1.0) 3.0 (2.2, 4.8)

NARR 0.56 (0.26, 1.9) 0.015 (0.0043, 0.17) 0.5 (−0.2, 1.1) 2.8 (2.0, 4.3)

GHCN 0 (0, 0) 0.015 (0.0036, 0.20) 0 (0, 0) 2.5 (2.5, 2.5)
Transformed Precip PRISM 0 (0, 0) 0.010 (0.0033, 0.15) 0 (0, 0) 2.7 (2.7, 2.7)

NARR 0 (0, 0) 0.014 (0.0043, 0.16) 0 (0, 0) 2.5 (2.5, 2.5)
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Table 2. Percent of the variance explained with each station selection. Values shown are the
median and 5th–95th percentile values (in parentheses) based on all 50 000 Monte Carlo cal-
culations.

Station # Variance Explained (%)

Temperature Precipitation

01 86.68 (82.18–89.57) 88.08 (83.50–91.21)
02 6.71 (05.00–09.30) 6.70 (04.20–11.08)
03 2.36 (01.68–03.41) 2.72 (01.62–04.38)
04 1.13 (00.80–01.66) 1.23 (00.69–02.18)
05 0.66 (00.47–00.97) 0.65 (00.36–01.22)
06 0.43 (00.31–00.63) 0.39 (00.21–00.74)
07 0.30 (00.22–00.44) 0.25 (00.13–00.48)
08 0.22 (00.16–00.32) 0.16 (00.08–00.32)
09 0.17 (00.13–00.25) 0.11 (00.06–00.22)
10 0.14 (00.10–00.19) 0.08 (00.04–00.16)
11 0.11 (00.08–00.16) 0.06 (00.03–00.12)
12 0.09 (00.07–00.13) 0.05 (00.02–00.09)
13 0.08 (00.06–00.11) 0.04 (00.02–00.07)
14 0.06 (00.05–00.09) 0.03 (00.01–00.06)
15 0.06 (00.04–00.08) 0.02 (00.01–00.05)
16 0.05 (00.04–00.07) 0.02 (00.01–00.04)
17 0.04 (00.03–00.06) 0.02 (00.01–00.03)
18 0.04 (00.03–00.05) 0.01 (00.01–00.03)
19 0.03 (00.03–00.05) 0.01 (00.01–00.03)
20 0.03 (00.02–00.04) 0.01 (00.00–00.02)
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Fig. 1. Map of the study region, defined as the region encompassed by the U.S. states of Idaho, Oregon, and Wash-
ington. The map and legend highlight several geographic features as well as the cities of Boise, Portland, and Seattle.
The color scale shows elevation above sea level in meters.

Table 1. Statistics of annual climate data for both temperature and precipitation. Results for precipitation are shown
for both the raw data and after the tranformation to Gaussian, as described in the text. For each statistic, the median
for all grid cells is listed followed by the 5th and 95th percentile values in parentheses.

Variable Source Mean Variance Skewness Kurtosis

Temperature (◦C)

GHCN 10.1 (5.2, 12.3) 0.5 (0.3, 1.2) -0.4 (-1.5, 0.3) 3.2 (2.2, 6.2)
PRISM 6.9 (2.0, 11.2) 0.6 (0.3, 1.2) -0.1 (-0.7, 0.5) 2.8 (2.3, 4.1)
NARR 7.8 (2.2, 11.9) 0.6 (0.2, 1.1) -0.1 (-0.7, 0.3) 2.7 (2.0, 4.0)

Raw Precip (m/yr)

GHCN 0.59 (0.23, 2.1) 0.016 (0.0039, 0.21) 0.6 (-0.1, 2.0) 3.0 (2.0, 8.4)
PRISM 0.53 (0.24, 2.3) 0.010 (0.0034, 0.16) 0.4 (-0.1, 1.0) 3.0 (2.2, 4.8)
NARR 0.56 (0.26, 1.9) 0.015 (0.0043, 0.17) 0.5 (-0.2, 1.1) 2.8 (2.0, 4.3)

Transformed Precip

GHCN 0 (0, 0) 0.015 (0.0036, 0.20) 0 (0, 0) 2.5 (2.5, 2.5)
PRISM 0 (0, 0) 0.010 (0.0033, 0.15) 0 (0, 0) 2.7 (2.7, 2.7)
NARR 0 (0, 0) 0.014 (0.0043, 0.16) 0 (0, 0) 2.5 (2.5, 2.5)

Fig. 1. Map of the study region, defined as the region encompassed by the US states of Idaho,
Oregon, and Washington. The map and legend highlight several geographic features as well
as the cities of Boise, Portland, and Seattle. The color scale shows elevation above sea level
in meters.
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Fig. 2. Results for annual temperature and precipitation, obtained using the optimal network design calculation.
Calculations were performed using regionally-averaged temperature and precipitation as the target metric (defined
as the average over the U.S. states of Idaho, Oregon, and Washington). Contours show the percentile value of the
grid cell weighting – higher weights denote areas where measurements contribute more to the variance explained.
Percentile values are displayed for clarity, since our emphasis is on the relative weighting among grid cells. Results
are obtained using the PRISM dataset (1948-2011), central estimates for the measurement error (R2), and a sample
size of 30 years.

Fig. 2. Results for annual temperature and precipitation, obtained using the optimal network
design calculation. Calculations were performed using regionally-averaged temperature and
precipitation as the target metric (defined as the average over the US states of Idaho, Oregon,
and Washington). Contours show the percentile value of the grid cell weighting – higher weights
denote areas where measurements contribute more to the variance explained. Results are
obtained using the PRISM dataset (1948–2011), central estimates for the measurement error
(R2), and a sample size of 30 yr.
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Fig. 3. Results from three different datasets (GHCN, NARR, PRISM), calculated for the 181 GHCN stations with
continuous records for the period 1979-2011. The top map, labeled “GHCN locations”, shows the location of the
GHCN stations used in the calculation. The 6 other maps show results for the different datasets. Each dot denotes
the location of a GHCN station, and is shaded according to the percentage of time the station was chosen using the
network design algorithm. Rank correlations with the GHCN results are shown in the top right corner of the NARR
and PRISM maps. As with Figure 2, percentile values are plotted to simplify interpretation. Note that, unlike in other
figures, the color scale remains a light yellow at low values, and does not fade to white.

Fig. 3. Results from three different datasets (GHCN, NARR, PRISM), calculated for the 181
GHCN stations with continuous records for the period 1979–2011. The top map, labeled “GHCN
locations”, shows the location of the GHCN stations used in the calculation. The 6 other maps
show results for the different datasets. Each dot denotes the location of a GHCN station, and is
shaded according to the percentage of time the station was chosen using the network design
algorithm. Rank correlations with the GHCN results are shown in the top right corner of the
NARR and PRISM maps. As with Fig. 2, percentile values are plotted to simplify interpretation.
Note that, unlike in other figures, the color scale remains a light yellow at low values, and does
not fade to white.
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Fig. 4. Sensitivity of network design results for annual temperature, obtained by varying the parameters used to apply
the algorithm. The top row shows results in which the sample size is varied between 20 and 40 years, the middle row
shows results obtained from the first half of the record (1948-1979) and the last half (1980-2011), and the bottom
row shows the impact of scaling the measurement error (R2) by an order of magnitude in each direction.

Fig. 4. Sensitivity of network design results for annual temperature, obtained by varying the
parameters used to apply the algorithm. The top row shows results in which the sample size
is varied between 20 and 40 yr, the middle row shows results obtained from the first half of the
record (1948–1979) and the last half (1980–2011), and the bottom row shows the impact of
scaling the measurement error (R2) by an order of magnitude in each direction.
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Fig. 5. As in Figure 4 except applied to annual precipitation.Fig. 5. As in Fig. 4 except applied to annual precipitation.
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